
LECTURE- 6  

Principles of   

Operating Systems 

PROCESS SCHEDULING, 

SCHEDULERS 



Process Scheduling 
Process (PCB) moves from queue to queue  

When does it move? Where?  A scheduling decision 



Process Scheduling Queues 

 Job Queue - set of all processes in the system 

 Ready Queue - set of all processes residing in main 

memory, ready and waiting to execute. 

 Device Queues - set of processes waiting for an I/O 

device. 

 Process migration between the various queues. 

 Queue Structures - typically linked list, circular list 

etc. 



Process Queues 

Device 

Queue 

Ready 

Queue 



Process 

Control 

Block 

Enabling Concurrency and Protection: 

Multiplex processes 
 Only one process (PCB) active at a time  

 Current state of process held in PCB: 
 “snapshot” of the execution and protection environment 

 Process needs CPU, resources 

 

 Give out CPU time to different processes 
(Scheduling): 
 Only one process “running” at a time 

 Give more time to important processes 

 

 Give pieces of resources to different processes 
(Protection): 
 Controlled access to non-CPU resources 

 E.g. Memory Mapping: Give each process their own 
address space 



Enabling Concurrency: Context Switch 

 Task that switches CPU from one process to 

another process 
 the CPU must save the PCB state of the old process and 

load the saved PCB state of the new process. 

 Context-switch time is overhead 
 System does no useful work while switching 

 Overhead sets minimum practical switching time; can 

become a bottleneck 

 Time for context switch is dependent on 

hardware support ( 1- 1000 microseconds). 

 



CPU Switch From Process to Process 

 Code executed in kernel above is overhead  
 Overhead sets minimum practical switching time 



Schedulers 

 Long-term scheduler (or job scheduler) -  
 selects which processes should be brought into the ready 

queue.  

 invoked very infrequently (seconds, minutes); may be slow. 

 controls the degree of multiprogramming 

 Short term scheduler (or CPU scheduler) - 
 selects which process should execute next and allocates 

CPU. 

 invoked very frequently (milliseconds) - must be very fast 

 Medium Term Scheduler 
 swaps out process temporarily 

 balances load for better throughput 



Medium Term (Time-sharing) 

Scheduler 



Process Profiles 

 I/O bound process -  
 spends more time in I/O,  short CPU bursts, CPU 

underutilized. 

 CPU bound process -  
 spends more time doing computations; few very long CPU 

bursts, I/O underutilized. 

 The right job mix: 
 Long term scheduler - admits jobs to keep load balanced 

between I/O and CPU bound processes 

 Medium term scheduler – ensures the right mix (by 

sometimes swapping out jobs and resuming them later) 



Process Creation 

 Processes are created and deleted 
dynamically 

 Process which creates another process is 
called a parent process; the created process 
is called a child process. 

 Result is a tree of processes  
 e.g. UNIX - processes have dependencies and form a 

hierarchy. 

 Resources required when creating process 
 CPU time, files, memory, I/O devices etc. 



UNIX Process Hierarchy 



What does it take to create a process? 

 Must construct new PCB  

 Inexpensive 

 Must set up new page tables for address space 

 More expensive 

 Copy data from parent process? (Unix fork() ) 

 Semantics of Unix fork() are that the child process gets a 

complete copy of the parent memory and I/O state 

 Originally very expensive 

 Much less expensive with “copy on write” 

 Copy I/O state (file handles, etc) 

 Medium expense 

 



Process Creation 

 Resource sharing 
 Parent and children share all resources. 

 Children share subset of parent’s resources - prevents 

many processes from overloading the system. 

 Parent and children share no resources. 

 Execution 
 Parent and child execute concurrently. 

 Parent waits until child has terminated. 

 Address Space 
 Child process is duplicate of parent process. 

 Child process has a program loaded into it. 

 



UNIX Process Creation 

 Fork system call creates new processes 
 

 execve system call is used after a fork to 

replace the processes memory space with a 

new program. 



Process Termination 

 Process executes last statement and asks 
the operating system to delete it (exit). 

 Output data from child to parent (via wait). 

 Process’ resources are deallocated by operating system. 

 Parent may terminate execution of child 
processes. 

 Child has exceeded allocated resources. 

 Task assigned to child is no longer required. 

 Parent is exiting 

 OS does not allow child to continue if parent terminates 

 Cascading termination 

 


